
"The native cattle are extinct, but the island is full of artificial breeds. The agriculturalist Bakewell created sheep and cows and horses to order, and breeds in which everything is omitted but what is economical. The cow is sacrificed to her bag; the ox to his sirloin."

Ralph Waldo Emerson

EPD Basics and Beyond

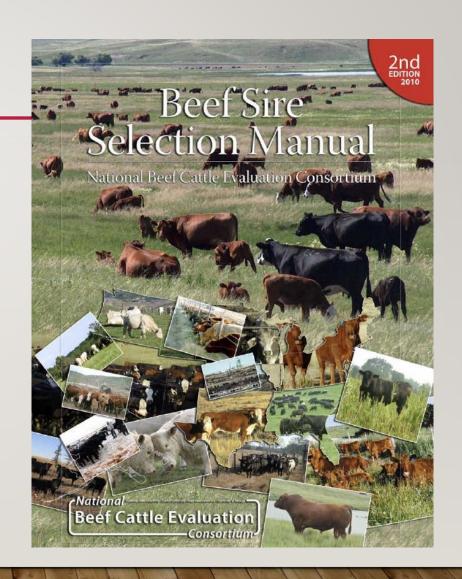
Bob Weaber, Ph.D.

Professor and Head,

Eastern Kansas Research and

Extension Centers

Kansas State University



3 SYSTEMATIC SIRE SELECTION

- Set Goals
- Assess Cow Herd
- Assess Resources
- Breed Selection
- Bull Selection
 - Reproduction
 - Structure
 - Performance
 - Visual Appraisal

http://www.nbcec.org/producers/sire.html

4 EBEEF.ORG

Home About Us eXtension Contact Us

What is eBEEF?

eBEEF is the beef genetics/genomics community of practice with eXtension. Our mission is to foster a research and outreach community, engage beef cattle producers and ag professionals through trainings and publications, and support research and outreach projects.

Projects at eBEEF

Bovine Respiratory Disease CAP

Feed Efficiency

Reproduction

National Beef Cattle Evaluation Consortium (NBCEC)

Search this site:

Google™ Custom Search

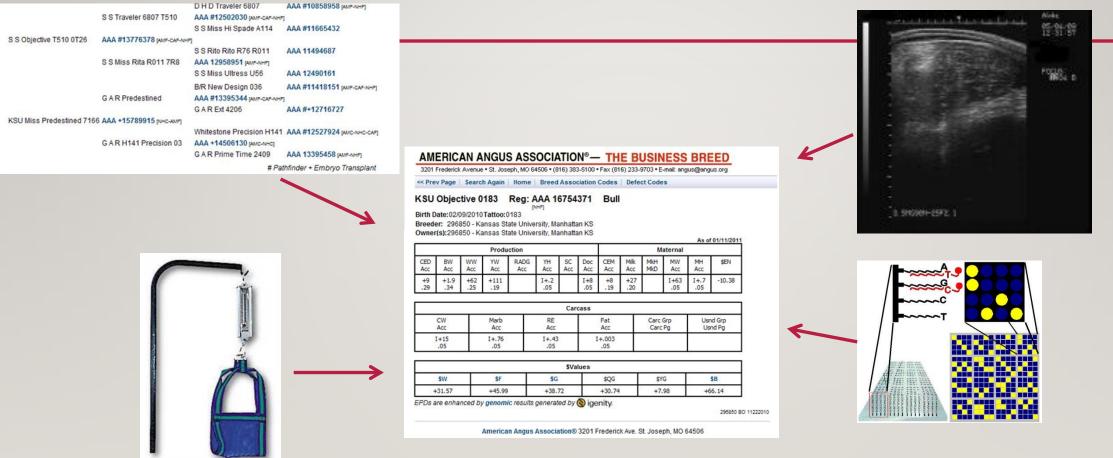
Sponsors

United States Department of Agriculture National Institute of Food and Agriculture

Resources

5 OVERVIEW

Genetic Predictions for Selection


- Basic model
- Deciphering actual data, adjusted data, and ratios
- Fundamentals of EPDs
- Accuracy
- Percentile Rank

7 CURRENT OPPORTUNITIES

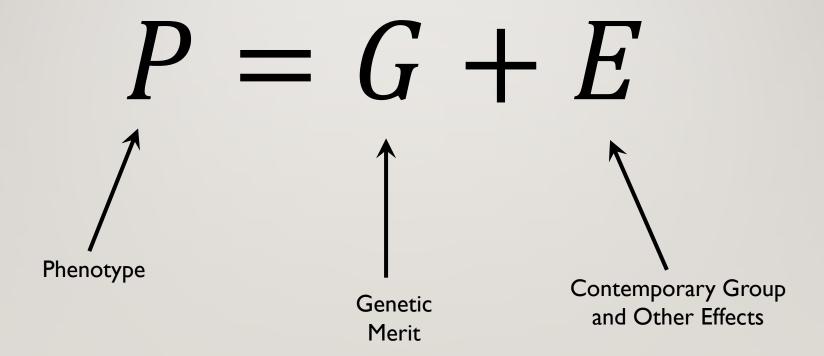
- Genetic improvement of beef cattle involves trade-offs between:
 - Accuracy of Selection
 - Intensity of Selection
 - Generation Interval
- Need to know:
 - as much as we can
 - about as many animals as we can
 - as quickly as we can

8 SOURCES OF INFORMATION

Moser, 2011

9

BEEF GENETICS BASICS



November 5, 2020

10

BASIC MODEL

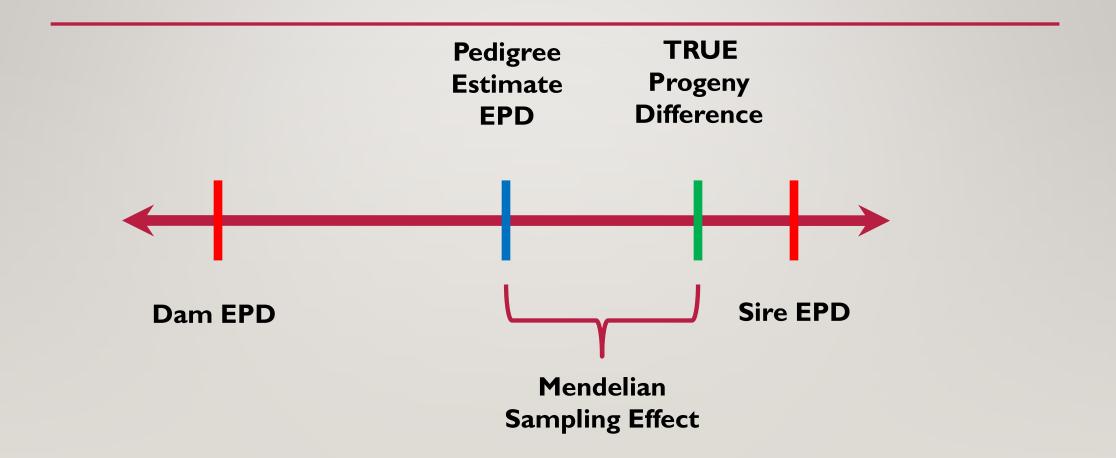
BASIC MODEL

$$P = G + E$$

$$G = A + D + I$$

A = Breeding value (Additive gene effects)

D = Dominance effects (pairing of genes effects)


I = Epistatic (interactions among genes)

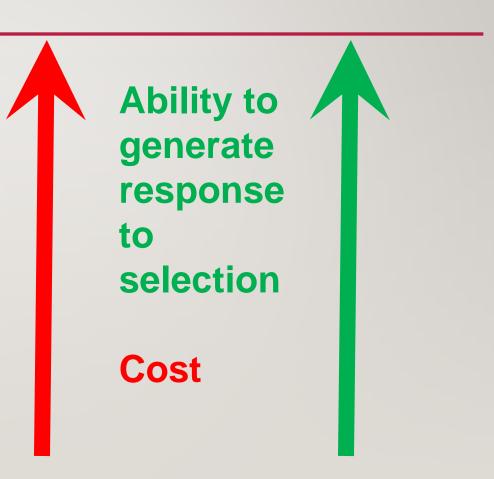
12 PHENOTYPIC VARIATION

- Animal to animal variation
 - Genetics
 - Additive (the stuff for which we select)
 - Non-additive (heterosis)
 - Environment
 - Forage resources
 - Dam milk production
 - Effects
 - Sex
 - Age of calf
 - Age of dam
- Adjust records to equalize animals for non-genetic effects which cause variation in phenotypes

13

FINDING TRUE GENETIC MERIT

SELECTION TOOLS FOR BEEF CATTLE IMPROVEMENT



16 SIRE SELECTION TOOLS:

- DNA Markers
- EPD
- Ratios
- Adjusted weights
- Raw Weights
- Visual Appraisal

17 RAW DATA

- Includes all sources of variation
 - Management (i.e. feed)
 - Differences in age
 - Sex
 - Age of dam
 - Climate
 - Genetics

18 ADJUSTED DATA

- What is the data 'adjusted' for?
 - Sex
 - Age of calf
 - Age of dam
- Why?
 - Compare 'apples to apples'

19 RATIOS

- A way of comparing animals within a contemporary group
 - Contemporary group average = 500
 - Animal = 550
 - Ratio = 110
 - (550/500)*100
- Why not outside of that group?
 - Different environmental influences
 - Group averages may not be equal

20 SOME INFORMATION JUST ISN'T THAT USEFUL...

November 5, 2020

21 EPD-EXPECTED PROGENY DIFFERENCE

- Separates the 'wheat from the chaff'
- What information is included?
 - Pedigree information
 - (Parents, grand-parents, half –sibs, etc.)
 - Individuals' own record (very important)
 - Progeny information
 - Correlated traits (BW,WW,YW)
 - REMOVES ENVIRONMENTAL EFFECTS
 - Can be used across herds but only within a breed

22 EPDS DEFINED

Expected

• Future, average, mean

Progeny

Offspring

Difference

- Implies comparison between animals
- NOT phenotypic performance
- Measure of relative merit among individuals
- Estimate of average effect of animal as parent
- Estimate of average gamete genetic merit

23 PEDIGREE ESTIMATE EPDS

Pedigree Est. EPD = 1/2 Sire EPD + 1/2 Dam EPD

24 INDIVIDUAL RECORD

$$EPD_I = (0.5*EPD_S) + (0.5*EPD_D) + (0.5*Mendelian Sampling Effect)$$

Mendelian sampling (MS) is the difference between an individual's EPD and its parent average or pedigree estimate (PE-EPD). In other words, how different is the progeny's genetic sampling from the average mating of these parents.

See Beef Improvement Federation Guidelines

25 PERFORMANCE OF THE PROGENY

Sire

Offspring of one sire exhibit more than 3/4 diversity of the entire population

+30 lb

+15 lb

-10 lb

+ 5 lb

+10 lb

Progeny +10 lb

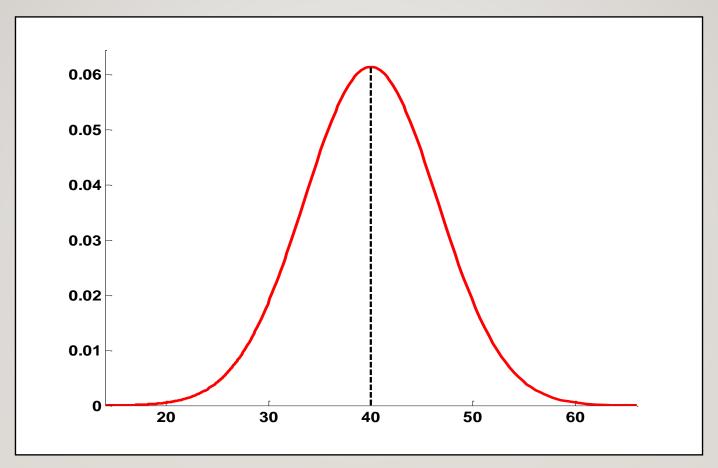
FROM PROGENY

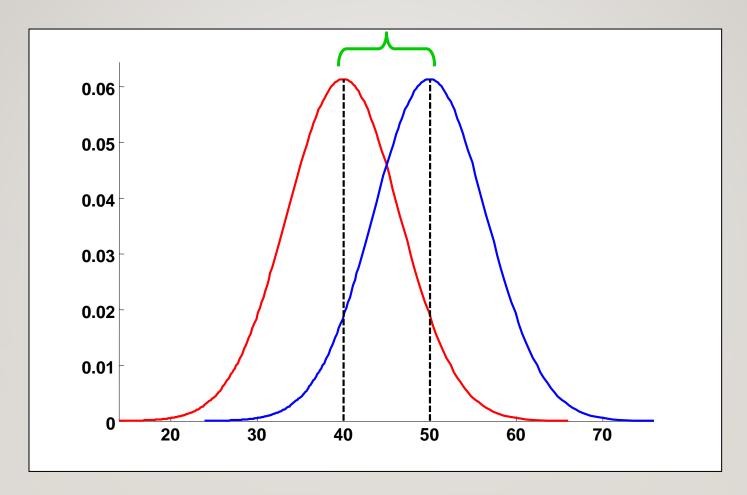
WE LEARN ABOUT PARENTS

Sire

+15 lb

-10 lb


+ 5 lb


Progeny +10 lb

Sire EPD +8-9 lb (EPD is "shrunk")

Garrick, 2013

Average value of gametes EPD = 40

10 lb. Difference in EPD of Two Bulls

29 HOW EPDS ARE COMPUTED: CONTEMPORARY GROUP

- Consists of animals that are:
 - Given equal opportunity to perform
 - Of similar age and sex
- Identify fair competition
- Formed from management information
- The basis of all genetic comparisons

Phenotype = CG + Genetics

Genetics = Phenotype - CG

30 CONTEMPORARY GROUPTIPS

- Focus on exceptions to your typical management
 - Show cattle, sicks, ET, first calf heifers
- Ask "Were they given equal opportunity to perform?"
- Too many contemporary groups is BAD too!
- Report all calves in CG

31 WHOLE GROUP REPORTING

Weaning Weight Contemporary Example

		All Calves	Reported	Top Half Reported			
Calf ID	Adj. 205d. Weight	Deviation	Ratio	Deviation	Ratio		
1	524	-101	84				
2	562	-63	90				
3	578	-47	93				
4	605	-20	97				
5	606	-19	97				
6	639	14	102	-36	95		
7	643	18	103	-32	95		
8	655	30	105	-20	97		
9	694	69	111	19	103		
10	742	117	119	67	110		
Average Deviation and Ratio		0	100	0	100		
Average W	/eight	625		675			

32 EFFECT OF INCOMPLETE REPORTING

		WCG	PCG	Sire WW	Dam WW	Dam MILK	Dam PPA	WCG Int	PCG Int	
Calf ID	Adj. 205d. Wt.	Dev	Dev	EPD	EPD	EPD		EPD	EPD	Diff
1	524	-101		40	30	10	50	24		NA
2	562	-63		40	30	10	50	28		NA
3	578	-47		40	30	10	50	30		NA
4	605	-20		40	30	10	50	33		NA
5	606	-19		40	30	10	50	33		NA
6	639	14	-36	40	30	10	50	37	31	-5
7	643	18	-32	40	30	10	50	37	32	-5
8	655	30	-20	40	30	10	50	38	33	-5
9	694	69	19	40	30	10	50	42	37	-5
10	742	117	67	40	30	10	50	47	42	-5
Average		0	0	40	30	10	50	35	35	-5
Average		625	675					40		

33 HOW DO WE COMPARE BULLS ACROSS HERDS?

- Idea of connectedness
- Reference sires ... Compare A to F by competition

Herd I CGI

Bull Progeny

A 10

B 8

C 2

Herd 3 CGI

Bull Progeny

E 8

FII

G 3

Herd I CG2

Bull Progeny

B 7

C 15

D 6

Herd 4 CGI

Bull Progeny

B 10

D 9

F 13

Herd 2 CGI

Bull Progeny

D 8

E II

F 3

Herd 5 CGI

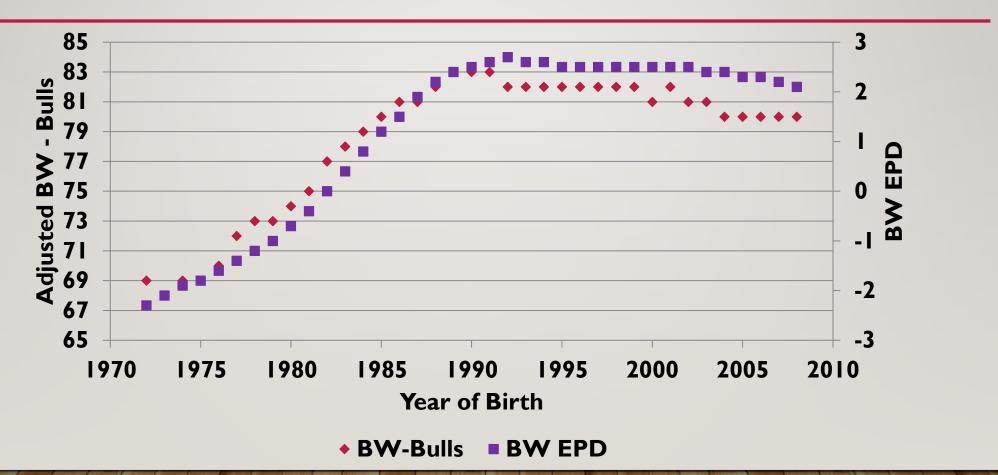
Bull Progeny

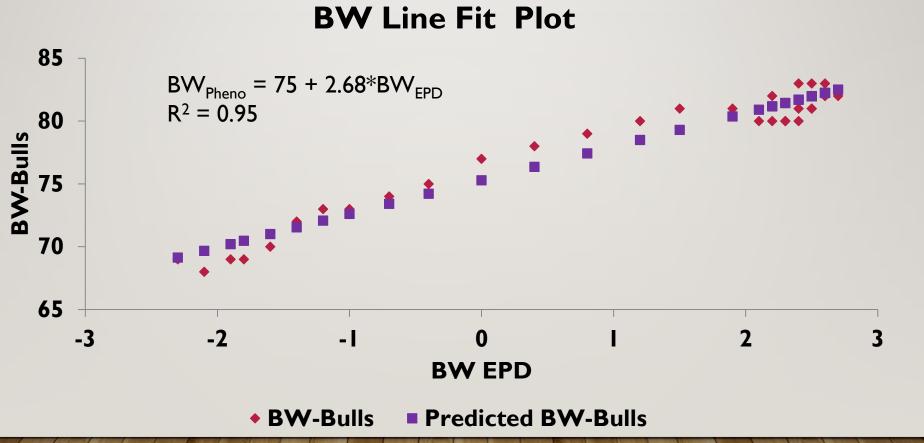
F 18

G II

H 13

DO EPDS WORK??




35 EPDS WORK...

- Much more effective generating response to selection than phenotypic selection
- Can be used to:
 - Increase performance
 - Decrease performance
 - Optimize performance
- Do not select for maximum genetic expression w/o regard to other factors
 - Nutritional conditions

36 BIRTH WEIGHT PHENOTYPIC AND GENETIC TREND

37 EPDS WORK—SELECTION FOR BIRTH WEIGHT

US-MARC AB-EPD

November 5, 2020

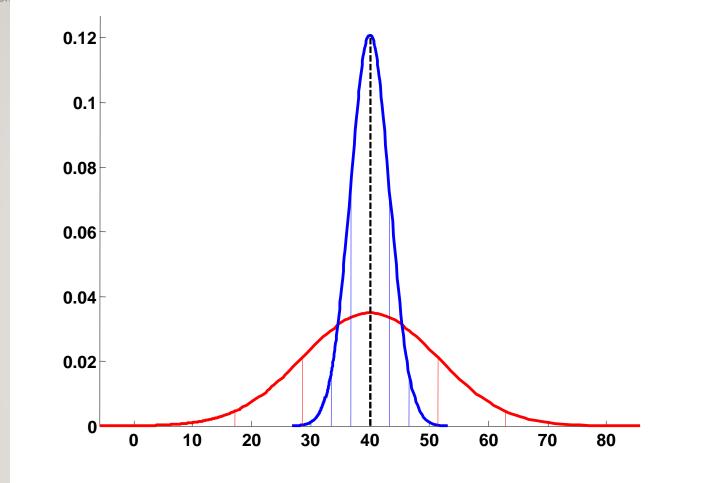
Table 11. Pooled and within-breed regression coefficients (lb/lb) for weights at birth (BWT), 205 days (WWT), and 365 days (YWT) of F₁ progeny and for calf weights (205 d) of F₁ dams (MILK) on sire expected progeny difference and by sire breed

(WILER) on sine expected progeny difference and by sine oreed										
	BWT	WWT	YWT	MILK						
Pooled	1.17 ± 0.04	0.80 ± 0.03	0.98 ± 0.04	1.11 ± 0.07						
Sire breed										
Angus	1.06 ± 0.09	0.83 ± 0.06	1.18 ± 0.07	1.08 ± 0.15						
Hereford	1.16 ± 0.07	0.71 ± 0.05	1.00 ± 0.06	1.03 ± 0.15						
Red Angus	1.01 ± 0.14	0.74 ± 0.13	0.61 ± 0.15	1.34 ± 0.26						
Shorthorn	0.75 ± 0.21	0.52 ± 0.14	0.55 ± 0.17	1.00 ± 0.43						
South Devon	-0.24 ± 0.53	0.80 ± 0.29	0.50 ± 0.32	1.08 ± 1.06						
Beefmaster	2.08 ± 0.33	0.98 ± 0.21	0.76 ± 0.31	3.41 ± 0.67						
Brahman	1.93 ± 0.21	1.08 ± 0.18	1.36 ± 0.22	0.09 ± 0.62						
Brangus	1.49 ± 0.23	0.74 ± 0.20	0.81 ± 0.18	0.28 ± 0.58						
Santa Gertrudis	3.75 ± 0.71	1.31 ± 0.25	1.15 ± 0.29	0.78 ± 1.00						
Braunvieh	0.88 ± 0.26	0.63 ± 0.28	0.31 ± 0.27	1.54 ± 0.65						
Charolais	1.14 ± 0.12	0.96 ± 0.11	0.86 ± 0.12	1.06 ± 0.22						
Chiangus	1.44 ± 0.30	0.13 ± 0.24	0.35 ± 0.28	0.19 ± 0.41						
Gelbvieh	1.05 ± 0.14	0.81 ± 0.11	1.15 ± 0.12	0.84 ± 0.25						
Limousin	1.11 ± 0.11	0.80 ± 0.07	0.86 ± 0.09	1.42 ± 0.21						
Maine Anjou	1.40 + 0.18	0.97 + 0.19	0.83 + 0.24	2.02 + 0.39						
Salers	1.26 + 0.23	0.82 + 0.25	0.60 + 0.24	1.70 + 0.38						
Simmental	1.16 + 0.14	1.44 + 0.12	1.33 + 0.12	0.95 ± 0.30						
Tarentaise	0.70 + 0.59	1.07 + 0.24	1.55 + 0.37	1.49 + 0.81						

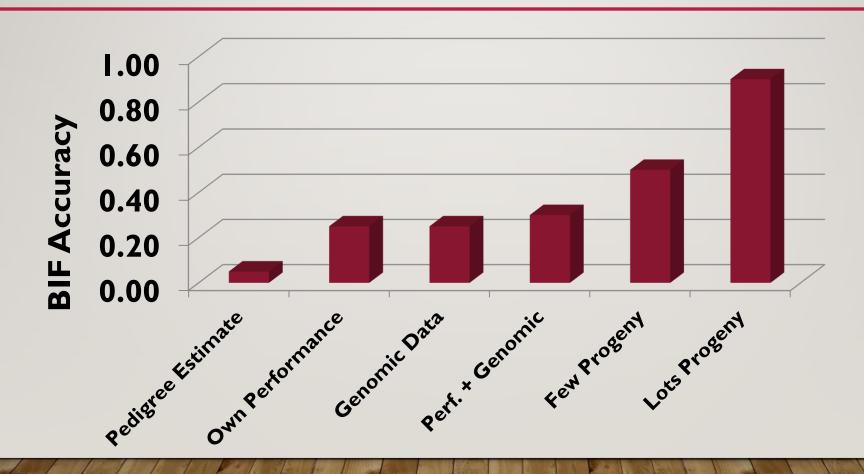
39 EPDS-ONE TOOL IN THE TOOL BOX

- Selection is challenging
- Not all economically important traits have EPD
 - Fertility
 - Disease resistance
 - Fescue fitness
 - Conformation traits
 - Mature weight
- Use the right tool for job!
- Multiple trait selection

CONCEPT OF ACCURACY



41 ACCURACY


- Measure of reliability of EPD
 - How much data was included in making the EPD
 - 0.05 Pedigree estimate
 - 0.30 Own performance plus pedigree info.
 - 0.90 Lots of progeny data
- As Prediction Error Variance goes to zero accuracy goes to 1.00

Difference in EPD Accuracy

Acc = 0.30, SEP = 11.4 Acc = 0.8, SEP = 3.3

43 SOURCES OF INFORMATION

PERCENTILE RANK

46 PERCENTILE RANK

- Locates a bull's EPD relative to other bulls in the breed.
- EPD at upper 25th percentile
 - 24 out of 100 bulls better
 - 75 out of 100 bulls worse
- Easy way to evaluate the where bull ranks in breed
- Use Non-Parent percentiles for yearlings
- Measure of 'extremeness'

International Cattle Evaluation - Run Date: 102720

Statistical Breakdown

•		Non-Parents														
ļ	·	Expected Progeny Differences														
ļ	2525	Growth and Maternal									Vo.		ke and Carca			
or and animals	GEST	CED	BW		YW	Milk	TM		SC	STAY	DOC	YG	cw		MARB	CFAT
Num Animals	12263	12639	12639	12639	12639	12639	12639	12639	11453	12639	12639	12639	12639		12639	12639
High	0.6	20		96	156	41	75		2.3	24	24	0.03	58		0.61	0.01
Average .	-2.7	9		60	85	23	53	5	0.6	13	10	-0.78	13		-0.50	-0.17
Low	-7.2	-6		20	19	0	22	-6	-0.9	1	-17	-1.10	-27		-0.85	-0.23
1%	-5.4	15	1	83	123	34	67	10	1.4	21	19	-0.94	35	1.53	-0.05	-0.21
2%	-5.0	15	-1.5	81	118	32	65	9	1.3	20	18	-0.93	32	1.49	-0.17	-0.20
3%	-4.8	14	-1.1	78	115	31	64	9	1.2	19	18	-0.92	31	1.47	-0.25	-0.20
4%	-4.6	14	-0.9	77	113	31	64	9	1.2	19	17	-0.92	30	1.45	-0.28	-0.20
5%	-4.5	13	-0.7	76	111	30	63	9	1.2	18	17	-0.91	29	1.44	-0.31	-0.20
10%	-4.1	12	0.1	72	105	29	61	8	1.0	17	16	-0.89	25	1.37	-0.38	-0.19
15%	-3.9	12	0.5	69	101	27	59	7	0.9	16	15	-0.86	22	1.34	-0.42	-0.18
20%	-3.6	11	0.9	68	98	27	58	7	0.8	16	14	-0.85	20	1.31	-0.44	-0.18
25%	-3.5	11	1.2	66	95	26	57	7	0.8	15	13	-0.84	19	1.29	-0.46	-0.18
30%	-3.3	10	1.5	65	93	25	56	6	0.7	15	13	-0.83	17	1.27	-0.47	-0.17
35%	-3.2	10	1.7	63	91	25	55	6	0.7	15	12	-0.82	16	1.26	-0.49	-0.17
40%	-3.0	9	1.9	62	89	24	54	6	0.6	14	12	-0.81	15	1.24	-0.50	-0.17
45%	-2.9	9	2.2	61	87	23	54	6	0.6	14	11	-0.81	14	1.23	-0.51	-0.17
50%	-2.8	9	2.4	60	85	23	53	5	0.6	13	11	-0.80	13	1.21	-0.52	-0.17
55%	-2.6	8	2.6	59	83	22	52	5	0.5	13	10	-0.79	12	1.20	-0.53	-0.17
60%	-2.5	8	2.8	58	81	22	51	5	0.5	13	10	-0.78	11	1.18	-0.54	-0.16
65%	-2.3	8	3.0	56	79	21	50	5	0.5	12	9	-0.77	10	1.17	-0.54	-0.16
70%	-2.2	7	3.3	55	77	21	50	4	0.4	12	9	-0.76	9	1.15	-0.55	-0.16
75%	-2.0	7	3.5	54	75	20	49	4	0.4	12	8	-0.75	8	1.13	-0.56	-0.16
80%	-1.8	7	3.8	52	72	19	48	4	0.4	11	7	-0.73	7	1.11	-0.58	-0.15
85%	-1.6	6	4.1	51	70	18	46	3	0.3	10	6	-0.71	5	1.08	-0.59	-0.15
90%	-1.2	5	4.5	49	66	17	45	3	0.2	10	5	-0.68	3	1.04	-0.61	-0.15
95%	-0.7	4	5.2	45	61	15	42	2	0.2	8	3	-0.62	1	0.96	-0.63	-0.14

THANK YOU!

QUESTIONS?

BOB WEABER, PH.D.

KANSAS STATE UNIVERSITY

785-532-1460

BWEABER@K-STATE.EDU